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Non-ergodicity of Two Particles Interacting via a
Smooth Potential
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We examine two point particles interacting via a smooth Lennard-Jones-type
potential of finite range on a two-dimensional torus. We find situations under
which this system contains a stable, elliptic periodic orbit and hence is not
ergodic. This result is in contrast to the case of hard spheres interacting via
inelastic collision, which are always ergodic for two particles, are conjectured to
be ergodic for arbitrarily many particles, and can never contain elliptic periodic
orbits.
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1. INTRODUCTION

Do gas molecules interacting in a box behave ergodically? This question
was originally raised by Boltzmann who asserted that the molecules should
behave ergodically. This assertion, known as the Boltzmann ergodic
hypothesis, has exerted an important influence in the development of
dynamical systems and ergodic theory.(1) The most common mathematical
interpretation of this problem is that the molecules are hard spheres that
interact by inelastic collisions. This formulation has come to be called the
Boltzmann�Sinai ergodic hypothesis and asserts that the motion of n such
particles on a torus are ergodic for all n�2.

The idea that hard sphere gases should be ergodic was first suggested
by the work of Krylov(2) and then proven by Sinai.(3) The first case to be
understood consisted of two disks (i.e., two-dimensional molecules) of
equal mass moving on a two-dimensional torus. Sinai showed that this
system can be reduced to the motion of a point particle moving on a torus
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that bounces off a circular scatterer, the celebrated Sinai billiard, and that
the motion of this system was ergodic.(4) Sinai and Chernov then showed
that two balls on a three-dimensional torus were ergodic.(5) For larger
numbers of balls, the system again reduces to a billiard type system with
a single particle moving in a high dimensional phase space but now bounc-
ing off cylindrical shaped obstacles. Great progress has been achieved over
the past decade in showing ergodicity of these systems under various condi-
tions(6�10) although at present the proof of ergodicity for an arbitrary num-
ber of three-dimensional balls has not been obtained.

From statistical mechanics, (11) one knows that under certain situa-
tions, such as high pressure and low temperature, the hard sphere model
is a poor predictor of gas properties. A more accurate model is obtained by
replacing the inelastic collision between particles by an interaction caused
by a smooth potential field V. We examine the simplest possible case of
such a system: two particles moving on a two-dimensional torus. We show
that this system can contain a stable elliptic periodic orbit and hence be
non-ergodic. A system of two hard spheres interacting by inelastic collision
is always ergodic. Thus there is a fundamental difference in the dynamics
governed by inelastic collisions as compared to smooth potentials.
Although our results only apply to two-particle systems, they raise the
possibility that systems with large numbers of particles interacting by
smooth potentials could also be non-ergodic.

A potential that is often used in statistical mechanics is the Lennard-
Jones 6-12 potential given by V(r)=c1[(c2 �r)12&(c2�r)6]. This potential is
strongly repelling at short distances and weakly attracting at larger distan-
ces (Fig. 1a). We will study the motion of two particles moving on a two-
dimensional torus T 2 that interact under a potential of the same general
shape as the Lennard-Jones potential (Fig. 1b), but the potential has finite
range: for some R, V(R)=0, r�R.

Fig. 1. (a) Lennard-Jones potential. (b) Finite range Lennard-Jones potential.
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Definition 1.1. We call a smooth potential of finite range of type
Lennard-Jones if

(1) V k(R)=0, k=0, 1, 2,...

(2) The potential is attracting for large r: for all r sufficiently close to R,

V$(r)>0, V"(r)<0, V$$$(r)>0

(3) The potential has a repelling core,

lim
r � 0

V(r)=+�

The class of potentials covered by these conditions is very broad. For
example, potentials that have an exponentially repelling force at short dis-
tances fit into this class.

Theorem 1.2. Given two point particles interacting under a
Lennard-Jones potential of finite range, there exist tori T 2 on which the
system is non-ergodic.

A precise statement of this result is given in Theorem 5.1.
Our work shows that for any fixed energy level (with high energy),

there exist tori of certain sizes for which the system restricted to that energy
level is non-ergodic. For tori of other sizes, it is possible that the system on
this energy level is ergodic, although proving such a result looks to be very
difficult problem. We conjecture that for most tori and for most energy
levels, the system is non-ergodic.

Turaev and Rom-Kedar(12, 30) have results that are similar in spirit to
ours. They look at the problem of approximating scattering billiards by
systems governed by smooth repelling potentials. These potentials are
concentrated in a narrow strip around the boundary of the billiard and
are strongly repelling. A point particle moving in a scattering billiard is
ergodic.(4) However, under appropriate conditions, the authors show that
the smooth approximating systems can contain elliptic islands and hence
be non-ergodic. Although it is not clear whether their conditions are
satisfied in the two-particle systems we are studying (see Remark 3.3), the
moral of our two papers is the same. When one takes an ergodic system
governed by inelastic collision and replaces the inelastic collision by an
interaction caused by a smooth potential, ergodicity can be destroyed.

Although our result only applies to the case of two particles in two
dimensions, it raises the possibility that a system of n particles interacting
under a potential field in three dimensions could also be non-ergodic and
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suggests a mechanism (partial focusing) by which non-ergodicity could be
produced for many-particle systems (see Remark 2.3). The non-ergodicity
of our examples is caused by partial focusing (Section 2). In a partially
focusing system, an infinitesimal family of nearby trajectories that starts
out parallel will at a later time be converging very slowly. If one of these
trajectories becomes periodic while the family is still converging (and hence
before the family focuses), then the orbit will be elliptic and hence can
destroy ergodicity. For higher dimensional systems, the notion of partial
focusing and its relation to elliptic orbits is not yet well understood.
However using a version of partial focusing, M. Wojtkowski(13) has
produced elliptic periodic orbits for billiards inside three-dimensional
domains. Our hope is that by using a higher-dimensional version of partial
focusing, one could find many-particle systems interacting under smooth
potentials that are non-ergodic. Even if one could find such examples
though, the measure of the set of trajectories constrained to lie near the
elliptic periodic orbits is likely to be very small. Thus from a practical point
of view, these systems may appear to be ergodic.

Hermann(14) has recently found other situations in which interacting
particle systems are non-ergodic. He examines particles interacting by
inelastic collision but in boxes of roughly spherical shape rather than the
traditional rectangular box and has constructed examples with arbitrarily
many particles for which the system is non-ergodic.

Our approach to proving Theorem 1.2 is as follows. We reduce the
two-particle system to a one-particle generalized Sinai billiard (Section 4)
and then use our previous results about generalized Sinai billiards(15) in
which we created elliptic periodic orbits.

For two disc-like particles of equal mass (or rationally related masses)
interacting by inelastic collision, Sinai [4, Section 8] showed that under a
change of variables, the system was equivalent to a Cartesian product of
two systems, one being a one-particle scattering billiard and the other
being a linear motion on the torus. Having shown that the scattering
billiard system was ergodic, he was able to conclude that the original two-
particle system was also ergodic. Sinai's change of variables involved using
the center of mass coordinates. However, because the motion takes place
on a torus, rather than the plane, the center of mass is not well-defined
when the ratio of the masses is irrational. To handle the case of irrationally
related masses, Simanyi and Wojtkowski(17) used a different change of
variables and showed that the two-particle system contained a one-particle
scattering billiard as a factor.

In reducing our two-particle system with interactions caused by a
potential field to a one-particle system interacting with a finite range poten-
tial (i.e., a generalized Sinai billiard), we adapt these techniques used for
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inelastic collisions. When the ratio of the masses is rational, we use the cen-
ter of mass reduction (Section 4a) to show that the system is equivalent to
a Cartesian product of two systems, one of which is a generalized Sinai
billiard. For the case of general masses, we use the Simanyi-Wojtkowski
reduction to show that the two-particle system has a factor consisting of a
generalized Sinai billiard (Section 4b). In either case, when the one-particle
generalized Sinai billiard is non-ergodic, then the original two-particle
system is also non-ergodic (Section 5). For the special case of equal masses
and total momentum zero, we present a geometrical reduction (Appendix),
closely related to the Sinai reduction, which allows one to visualize the
relationship between orbits for the generalized Sinai billiard and the corre-
sponding orbits for the two-particle system.

The motion of a point particle on a torus being acted upon by a sym-
metric potential field of finite range gives rise to what is known as a
generalized Sinai billiard (Section 2). In a generalized Sinai billiard, a point
particle moves on a torus which contains a disk. When the particle is out-
side the disk, it moves in a straight line. When it reaches the disk, it under-
goes a generalized reflection. Its angle of reflection equals its angle of
incidence but in addition the particle is also rotated around the disk by an
amount 2%(,) which depends on the angle of incidence , (Fig. 2). We call
2%(,), which determines the net amount that the particle rotates around
the disk, the rotation function. For a regular billiard, the rotation function
2%(,) is identically zero. For our system, the particle is acted upon by a
symmetric potential which allows us to explicitly solve the equations of
motion and calculate the rotation function (Section 3).

Generalized Sinai billiards have been extensively studied(3, 15, 18�26) and
various conditions have been found under which such a system is ergodic.
The most general sufficient conditions were given by Donnay and
Liverani.(25) Donnay(15) used the notion of partially focusing disks to show

Fig. 2. Rotation function for generalized billiard.
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Fig. 3. Stable periodic orbit for partially focusing billiard arising from Lennard-Jones type
potential.

that these sufficient conditions were also necessary conditions for
ergodicity.

Definition 1.3. A rotation function is termed partially focusing if

(1) there is an angle ,* for which the rotation function satisfies
2%$(,*)=2,

(2) in a neighborhood of ,*, 2%$ is continuous and takes on values
less than 2.

We call a disk partially focusing if its rotation function is partially focusing.

For a partially focusing disk, we will be able to construct a periodic
orbit (Fig. 3) that is elliptic and stable in the sense of KAM theory. Thus
such a system will be non-ergodic. In this construction, we take a trajectory
that enters the disk with an angle ,0 for which 2%$(,0)<2 but very close
to 2. We arrange the size of the torus so that this trajectory is periodic.
Providing that a technical condition

2%(,*){2,* mod(?) (1)

is satisfied, we can show that this orbit is elliptic and stable. This result is
contained in the following theorem.

Theorem 1.4.(15) Given a partially focusing disk that satisfies
condition (1), one can place the disk on a torus in such a way that there
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exists a stable, elliptic periodic orbit and hence the resulting generalized
billiard system is not ergodic. The size of the torus can be made arbitrarily
large in this construction.

We make use of partially focusing disks to study the motion of a point
particle under a Lennard-Jones potential. For low energies, there are tra-
jectories that start inside the range of the potential field and are not
energetic enough to escape from the potential. For such energies, the one-
particle system is clearly not ergodic. Thus in studying ergodicity, one first
has to insure that the energy level is sufficiently high so that trajectories are
not trapped by the potential inside the disk. For high energies, there is no
apriori barrier to ergodicity.

A key property of Lennard-Jones potentials is

Theorem 1.5.(15) For all sufficiently high energies, a Lennard-
Jones potential of finite range generates a partially focusing rotation func-
tion 2%E .

To prove our main result, Theorem 1.2, we reduce the two-particle
system to a one-particle system with Lennard-Jones potential (Section 4).
This one-particle system gives rise to a generalized billiard that is partially
focusing for all sufficiently high energies. We fix one of these energy levels
and, providing that condition (1) holds, we choose the size of the torus so
there is an elliptic, stable orbit for the system (Section 2) restricted to this
energy level and thereby produce non-ergodicity for the reduced system.
This in turn implies that the original two-particle system is non-ergodic
(Section 5).

The existence of elliptic islands is stable under small perturbations to
the system. Thus once we have elliptic islands for our symmetric, finite
range potential, the elliptic islands will persist for small (smooth) perturba-
tions to the potential. In this way, we can create systems with non-finite
range, non-symmetric potentials, that have elliptic islands and are non-
ergodic. This issue is discussed in [15, Section 5].

Rather than using a Lennard-Jones type potential, we could consider
a finite range potential that is strictly repelling, V$(r)<0, r # (0, R], and
that goes smoothly to zero as r approaches R. The corresponding rotation
function would be partially focusing for all energy levels.(15) However, the
critical angle ,* at which 2%$(,*)=2 is ,*=0, and the technical condition
(1) fails to hold since 2%(,*)=0=2,*. We discuss this case further in Sec-
tion 3. Our methods do not suffice to show that a system with a smooth,
repelling potential is non-ergodic. However, because such a system is par-
tially focusing, there are trajectories that if they were to become periodic at
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certain times would be elliptic. We conjecture that typically such a system
would have stable elliptic orbits and be non-ergodic.

The outline of the paper is as follows. We first discuss generalized
Sinai billiards (Section 2) and then show that symmetric, finite range
potentials give rise to such billiards (Section 3). We reduce the two-particle
system to a one-particle system (Section 4) and discuss the connection
between the one-particle system being non-ergodic and the two-particle
system being non-ergodic (Section 5). For the case of equal masses and
zero total momentum, we present a geometric reduction (Appendix).

2. GENERALIZED SINAI BILLIARD

A generalized Sinai billiard consists of a point particle moving on a
torus T 2=(&lx , lx)_(&ly , ly) that contains one or more disks. While out-
side the disks, the particle moves in a straight line at unit speed. When the
particle reaches a disk, it undergoes a generalized billiard reflection: the
angle of reflection equals angle of incidence but in addition the particle is
now rotated around the boundary of the disk a certain amount that
depends on the angle of incidence. In what follows, our torus will have only
one disk. The disk will have radius R and be centered at the origin.

We give the boundary of the disk coordinates (,, %) where , # (0, ?) is
the angle of entering the disk, measured relative to the boundary of the
disk, and % # [0, 2?) is the point of entry on the boundary. We set %=0 to
be the point (R, 0) on the positive x axis. If the trajectory enters the disk
at a point (,, %), it will leave the disk at a point (&,, %+2%(,)), where
2%(,) is the rotation function.

Let the rotation function 2%(,), , # [0, ?] be piecewise C4 smooth
with 2%(0)=0, 2%$(0)=2, 2%(k)(0)=0, k=2, 3, 4. These latter conditions
are necessary to produce a smooth flow at ,=0.

When the rotation function is partially focusing (Definition 1.3), the
resulting system can be made non-ergodic as the following theorem shows.

Theorem 2.1.(15) Given a partially focusing disk for which
2%(,*){2,* mod(?), one can choose lengths [lx , ly] for the torus in such
a way that the resulting generalized billiard system is not ergodic. The
lengths [lx , ly] can be made arbitrarily large in this construction.

For certain classes of rotations functions, the system becomes ergodic
if the disks are placed far enough apart.(25) In this case, no matter how
large the torus, and hence no matter how far apart the disks, the system
remains non-ergodic.
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Sketch of Proof of Theorem 2.1. We construct an elliptic periodic
orbit for the system that is stable in the sense of KAM theory and hence
prevents ergodicity.

First we show how to construct a periodic trajectory that enters the disk
with angle ,, for any , # (0, ?) (Fig. 3). We will require that 2%(,){2,,
(mod ?). Under the additional assumption that 0<2%$(,)<2,, this trajec-
tory will be elliptic and stable.

Choose ,. This choice determines the value 2%(,). Denote by %in , the
point at which the trajectory enters the disk, and by %out , the point at
which the trajectory leaves the disk. We want these points to be symmetry
with respect to the y axis. Since %out=%in+2%(,), this symmetry will be
achieved by setting %in=3?�2&2%(,)�2.

We extend the trajectory that enters the disk at %in backwards a dis-
tance l from the disk. The point we arrive at is a ``corner'' of the torus; its
coordinates are (&lx , &ly). The length l is a free parameter in the con-
struction; it can take on any value subject to the conditions lx , ly>R. This
condition is necessary to insure that disk does not overlap itself on the
torus. Thus as we vary the length l, we will generate tori of different sizes.

By symmetry, when we extend the trajectory that leaves the disk at
%out forwards a distance l, it will also arrive at a corner of the torus. This
corner has coordinates (lx , &ly). We identify this corner of the torus with
the corner (&lx , ly) and extend the trajectory an additional distance l; it
enters the disk a second time, now with angle ?&,. The points of entering
and leaving the disk this second time are again symmetric with respect to
the y axis. After leaving the disk and traveling a further distance l, it will
reach the corner (lx , ly). The resulting orbit is now periodic on the torus.

The following theorem(15) gives conditions under which this periodic
orbit is elliptic and stable.

Theorem 2.2. Let , # (0, ?) and assume that

0<2%$(,)<2

(1) The periodic orbit constructed above will be elliptic providing
that the parameter l satisfies

l<\ 2%$(,)
2&2%$(,)+ sin ,

(2) Consider the periodic orbit as a function of the parameter l.
Except for isolated values of l, the orbit will be stable in the sense of KAM
theory.
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To finish the proof of Theorem 2.1, we describe how to make a family
of tori T 2

n=(&l n
x , l n

x)_(&l n
y , l n

y) with the lengths l n
x , l n

y going to infinity
on which the particle motion is non-ergodic.

We have an angle ,* # (0, ?�2) for which 2%$(,*)=2 such that
2%(,*){2,* mod(?). Choose a sequence of angles ,n with ,n � ,*,
2%$(,n)<2 and 2%$(,n) � 2&.

For each ,n , we construct a stable, elliptic periodic orbit as described
above. The parameter ln , determining the length of this orbit, must satisfy

ln<\ 2%$(,n)
2&2%$(,n)+ sin ,n

Thus as ,n � ,*, we can choose the lengths ln � �. The corresponding
lengths l n

x , l n
y of the tori will also approach infinity.

The requirement that 2%(,*){2,* mod(?) is needed for the following
reason. Suppose 2%(,*)=2,*. Then for , near ,*, 2%(,) is very close to 2,.
In the construction of the periodic orbit, the periodic trajectory entering
the disk with angle , and with 2%(,) close to 2, will be very nearly parallel
to the x axis. Thus l will need to be very large to insure that ly>R. Recall
that this condition is necessary to insure that the disk does not have self-
intersection on the torus. However, if

l>\ 2%$(,)
2&2%$(,)+ sin ,

then the periodic orbit is no longer elliptic. It becomes hyperbolic and no
longer presents an obstacle to ergodicity. Thus such a system could con-
ceivably be ergodic.

A calculation, (15) shows that in general as ,n � ,* with 2%(,*)=2,*,
then the lengths ln needed to insure l n

y>R grow to infinity so rapidly that

l n>\ 2%$(,n)
2&2%$(,n)+ sin ,n

and the periodic orbit constructed is no longer elliptic.
The results for the case 2%(,*)=2,*+? are similar. In this case, the

periodic orbit entering with angle , and 2%(,) close to 2,+? will be
nearly vertical. The length l will have to be very long to insure that lx>R.

Remark 2.3. The intuition as to how partial focusing contributes
to non-ergodicity is as follows. When 2%$>2, an infinitesimal family of
trajectories that is parallel when they enter the disk will start to diverge as
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they pass through the disk and will then be diverging when they leave the
disk (see Fig. 2 in ref. 15). Such a divergence of trajectories contributes to
producing sensitive dependence on initial conditions, positive Lyapunov
exponents and ergodicity. If 2%$<2, then an infinitesimal family of trajec-
tories that is parallel when they enter the disk will start to converge as they
pass through the disk and be converging when they leave the disk. If the
time before they return to the disk is sufficiently long, then the converging
family will be able to focus, after which time it will again be diverging. This
behavior of convergence followed by focusing and then by divergence is
called defocusing. L. Bunimovich, (27) in his celebrated Stadium billiard, was
the first to show that defocusing can also generate chaotic dynamics.

If however the trajectory were to close up and become periodic before
the converging variation had time to focus, then the orbit would be elliptic.
As 2%$ approaches 2 from below, the time to focusing goes to infinity. This
follows by continuity since for 2%$=2, the parallel family is again parallel
when it leaves the disk and will never focus in the flat region.

Thus ergodicity can be destroyed by slowly converging trajectories
that become periodic before focusing occurs. There will always be lots of
slowly focusing trajectories in a partially focusing system but in general one
does not know if these orbits will become periodic.

One could look for a similar mechanism of slow convergence for
higher dimensional systems and try to use this mechanism to construct
elliptic periodic orbits for particle systems with many particles. Using a ver-
sion of slow focusing, Wojtkowski(13) has produced elliptic periodic orbits
for billiards inside three-dimensional domains.

3. SYMMETRIC POTENTIALS OF FINITE RANGE

We examine the motion of a point particle moving on a torus T 2 and
being acted upon by a symmetric potential V of finite range R. We give the
system coordinates so that the potential is centered at the origin. Then the
finite range condition is expressed by the condition that V(r)=0, r�R.

The total energy E of the system is conserved under the flow. Thus,
a trajectory lies on a fixed energy surface. Let the particle have total
energy E. While outside the range of the potential, the particle moves in a
straight line.

Let (r(t), %(t)) be the coordinates of the particle as it passes through
the disk. Let the particle have angular momentum l. Then using the conser-
vation of angular momentum, one finds(28) that

d%
dr

=
l 2

r2
- 2(E&Veff (r))
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where Veff (r)=V(r)+l 2�2r2 is called the effective potential. The r(t) coor-
dinate evolves as if a point particle was moving in one dimension under the
influence of the potential Veff (r).

For a particle that enters the disk with angle , # [0, ?�2], has angular
momentum l=- 2E R cos , and total energy E, the total rotation is

2%E (,)=2 |
R

r̂

l 2

r2
- 2(E&Veff (r))

dr (2)

where r̂ is the minimum radius that the particle reaches in the disk. This
minimum radius is the value of r closest to R for which Veff (r)=E.

There is a symmetry in the rotation function between angles , and
?&,: a trajectory that enters the disk with angle ?&,, , # [0, ?�2], will
rotate clockwise by the same amount that that a trajectory entering with
angle , rotates counterclockwise.

Hence we see that a point particle with fixed energy E moving under
the influence of a symmetric potential V(R) of finite range gives rise to a
generalized Sinai billiard with rotation function 2%E(,) given by (2).

For a symmetric potential of finite range of Lennard-Jones type (see
Definition 1.3), the flow on the energy surface is clearly non-ergodic for low
energies. There are trajectories that start inside the disk and never leave:
they are trapped in a potential well. Since there is a set of positive measure
of such trajectories, ergodicity fails.

As the energy level increases, these trapped trajectories will cease to
exist and all trajectories that start in or enter the disk will leave the disk.
Apriori, for such energy levels, the system could be ergodic.

Theorem 3.1.(15) Let V(r) be a Lennard-Jones potential of finite
range. Then for all sufficiently high energies E:

1. Every trajectory that starts inside the disk, or enters the disk, will
leave the disk.

2. The potential generates a partially focusing rotation function 2%E .

3. If the partially focusing rotation function satisfies 2%E (,*){
2,* mod(?), we can construct tori T 2=(&lx , lx)_(&ly , ly), with lx , ly

arbitrarily large, for which the particle system is non-ergodic.

If the potential were identically zero, then a simple calculation shows
that 2%E (,)#2, so that 2%$E (,)#2. In our case, since the potential goes
smoothly to zero at the edge of the disk, we have that 2%E (0)=0 and that
2%$E (0)=2. For small ,, the attracting nature of the potential implies
2%$(,)>2. For large ,, the particle feels the repelling core of the potential
which implies that 2%E(?�2)=0 (Fig. 4). We conclude that 2%$E (,) must
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Fig. 4. Rotation function for Lennard-Jones potential.

pass from above two to below two and so there is an angle ,* for which
2%$E (,*)=2.

We choose a sufficiently high energy level E0 so that the rotation func-
tion 2%E0

is partially focusing. Then providing that 2%E0
(,*){2,* mod(?),

we use the method described in Section 2 to create a fixed torus T 2 with
sides lx0

, ly0
that contains an elliptic, stable periodic orbit. Thus the particle

system restricted to the energy level E0 is non-ergodic. Under small pertur-
bations to the system, the periodic orbit will persist, by the Implicit Func-
tion Theorem, and it will also remain stable. Thus we can show for an open
set of energy levels and open set of tori, the particle system is non-ergodic.

Corollary 3.2. For a system satisfying the assumptions of Theo-
rem 3.1, there exists an energy level E0 and torus lengths lx0

, ly0
such that

for some =>0, the particle system on the torus T 2=(&lx , lx)_(&ly , ly)
restricted to the E energy level is non-ergodic providing that |lx0

&lx |,
|ly0

&ly |, |E0&E | are all less than =. The values of E0 , lx0
, ly0

can be made
arbitrarily large.

We could also make small perturbations to the potential and still
retain the stable elliptic orbit. Thus there exist non-symmetric, non-finite
range potentials, close to our symmetric, finite range Lennard-Jones poten-
tials, for which the single particle on the torus is non-ergodic. This issue is
discussed further in [15, Section 5].

We have seen that for a fixed energy level, we can produce non-
ergodicity by choosing a torus of a particular size. It is possible that if we
choose other sizes for the torus, the flow would be ergodic. Finding a torus
with a partially focusing disk for which the flow is ergodic looks to be a
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very difficult problem. A partially focusing disk takes an infinitesimal family
of trajectories that was diverging and makes it converging. Furthermore,
these families can converge for an arbitrarily long time. If such a family were
to become periodic before converging, it would be elliptic. Thus for a general
torus, there are lots of trajectories that, if they were to become periodic,
would be elliptic and thus they would destroy ergodicity. In the explicit
examples we construct, we choose the size of the torus so as to guarantee peri-
odicity of a particular orbit. For a general torus, it would be a very difficult
problem to determine if any of the potentially elliptic orbits are indeed periodic.

For a smooth, repelling potential, the rotation function will be par-
tially focusing for every energy level. Since the potential goes smoothly to
zero at the edge of the disk, 2%$E (0)=2. For small ,, the repelling nature
of the potential implies that 2%$E (,)<2. Although the rotation function is
partially focusing, it does not satisfy condition (1) since ,*=0 and
2%E (,*)=0=2,*. When we construct a periodic orbit (Section 2), we find
that the length of this orbit is very large and as a result the orbit is hyper-
bolic rather than elliptic.

Our methods do not suffice to show that a system with a smooth,
repelling potential is non-ergodic. However, because such a system is par-
tially focusing, there are lots of potentially elliptic trajectories as the above
argument shows and we conjecture that in a typical case, the system will
have an elliptic orbit. This is in marked contrast to the hard sphere gas
which can never contain elliptic orbits.

Remark 3.3. Turaev and Rom-Kedar(12) look at systems with smooth
repelling potentials that are approximations of scattering planar billiard
systems. It is not clear whether their methods can be applied directly to our
situation to produce a non-ergodic billiard with smooth, repelling poten-
tial. For this problem, the corresponding scattering billiard consists of a
single circular obstacle on the two torus while they consider billiards in
bounded regions in the plane. If there exists a periodic orbit (or homoclinic
orbit) on the torus that lifts to a simple singular periodic orbit (or simple
singular homoclinic orbit) on the plane, then we could consider that this
orbit on the plane was produced by a billiard inside a bounded region and
try to apply their methods.

4. REDUCTION OF 2 PARTICLE SYSTEM TO
1 PARTICLE SYSTEM

We consider two particles of masses m1 , m2 moving on a two-dimen-
sional torus T 2=(&lx , lx)_(&ly , ly). The positions of the particles are
q1 , q2 # T 2 with momentums p1=m1q* 1 , p2=m2 q* 2 . The particles interact
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under a symmetric potential V of finite range R. The Hamiltonian for the
system is

H(q1 , q2 , p1 , p2)=
p2

1

2m1

+
p2

2

2m2

+V(&q1&q2&) (3)

The equations of motion for the system are given by Hamilton's equations;

dqi

dt
=

�H
�pi

=
pi

mi
(4)

dpi

dt
=&

�H
�qi

=&
�V
�qi

(&q1&q2&)

There are three conserved quantities for this motion: the total energy

E=H(q1 , q2 , p1 , p2) and the x and y components of total momentum
P=(Px , Py)= p1+ p2 .

The phase space for this system is eight-dimensional, a subset of
T 2_T 2_R2_R2. The existence of these three conserved quantities implies
that any given trajectory (q1 , q2 , p1 , p2)(t) is restricted to moving within a
five-dimensional level set on which the energy and total momentum are
constant. For each of these energy-momentum level sets, we ask whether
the flow restricted to that level set is ergodic or non-ergodic.

We will show that under appropriate change of variables, the motion
of this system can be reduced to that of one particle moving on a torus T� 2

on which there is a symmetric potential of finite range (i.e., a generalized
Sinai billiard). We give three approaches to the problem. The first one
works when the ratio of the masses m2 �m1 is rational (Section 4a). In this
case, the system is equivalent to a Cartesian product of two lower dimen-
sional systems and one of these systems is a generalized Sinai billiard. The
second reduction, which works for all masses, shows that the system con-
tains a lower dimensional factor consisting of a generalized Sinai billiard.
The third reduction (Appendix), that works in the special case of equal
masses and zero total momentum P=0, has the advantage of being
geometric and hence allows one to more easily visualize the relationship
between the one-particle system and the original two-particle system.

4a. Rational Ratio of Masses

For the system described above, we will make a canonical linear
change of variables

(Q1 , Q2 , P1 , P2)=L(q1 , q2 , p1 , p2) (5)
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We start by defining a change of variables on the configuration space:
L1 : T 2_T 2 � T� 2

1_T� 2
2 given by L1(q1 , q2)=(Q1 , Q2) with

Q1=c1 \m1 q1+m2q2

m1+m2 +
(6)

Q2=q1&q2

where the constant c1 is determined below. The variables P1 , P2 will be the
conjugate momentum for Q1 , Q2 .

This changes of variables is the standard way to simplify the Kepler
problem of two bodies interacting under a potential on the plane.(16) In our
case, the particles are moving on a torus which complicates the analysis.
In particular, if the ratio of the masses m2 �m1 is irrational, then the change
of variables (6) is not well defined for q1 , q2 on a torus. Specifically, the center
of mass Q1 �c1=(m1q1+m2 q2)�(m1+m2) is not a well defined quantity.

We show that for the ratio of the masses rational, the change of
variables is well define. Assume that m2 �m1=a�b # Z. The two particles
q1 and q2 move on the torus T 2=(&lx , lx)_(&ly , ly). Let v1=(2lx , 0),
v2=(0, 2ly) be a standard basis for the lattice generating T 2. Let

q� 1=q1+N1v1+M1v2
(7)

q� 2=q2+N2v1+M2v2

for Ni , Mi # Z be any two lifts of q1 , q2 in R2. The values of Q1 and Q2

must be independent of which representatives of q1 and q2 are taken.
For Q1 to be well defined on a torus T� 2

1 defined by basis vectors
[w1 , w2], we need that

c1 \m1q� 1+m2q� 2

m1+m2 +&c1 \m1q1+m2 q2

m1+m2 +=z1w1+z2w2 (8)

for some zi # Z and for some vectors wi , i=1, 2.
If we take

c1=
b(m1+m2)

m1

(9)

then we can solve equation (8) by setting wi=vi and z1=bN1+aN2 , z2=
bM1+aM2 . If we took a different value for c1 , then there would still be a
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solution but wi would then be a scalar multiple of vi with the scalar not
equal to one.

If the ratio of the masses is irrational, then we can not solve (8) for
general N i , Mi values.

For Q2=q1&q2 to be well defined on a torus T� 2
2 defined by basis

vectors [u1 , u2], we must have that

(q� 1&q� 2)&(q1&q2)=z1(u1)+z2(u2)

which holds for u1=v1 , u2=v2 , z1=N1&N2 and z2=M1&M2 .
With c1 given by (9), the change of variables L1(q1 , q2)=(Q1 , Q2)

reduces to

Q1=bq1+aq2 , Q2=q1&q2 (10)

The tori T� 2
1 , T� 2

2 have the same size as the original torus T 2. The linear map
L1 : T 2_T 2 � T� 2

1_T� 2
2 is given by a 4_4 matrix with integer entries and

determinant (a+b)2 and hence is a (a+b)2-to-one covering map. For the
case of equal masses, a=b=1, we recover Sinai's original change of
variables (for inelastic billiard collisions) [4, p.185] that was a four-to-one
cover.

Once the change of variables is defined for the position variables,
we determine the generalized momentum via the Legendre transform:
Pi=�L��Q4 i where L is the Lagrangian.(16) A calculation gives that

P1=
p1+ p2

a+b
(11)

P2=
a

a+b
p1&

b
a+b

p2

Combining (10) and (11) gives us a change of variables (Q1 , Q2 ,
P1 , P2)=L(q1 , q2 , p1 , p2) that is canonical: LtJL=J where J is the 8_8
matrix of the form

J=\ O
&Id

Id
0 + (12)

We get a new Hamiltonian

H� (Q1 , Q2 , P1 , P2)=
P2

1

2C1

+
P2

2

2C2

+V(&Q2&) (13)

1037Non-ergodicity of Two Particles Interacting via a Smooth Potential



with

C1=\ b2

m1

+
a2

m2 +
&1

, C2=\ m1m2

m1+m2+
Under this change of variables, the energy is unchanged: H(q1 , q2 , p1 , p2)

=H� (L(q1 , q2 , p1 , p2)).
The Hamiltonian H� can be viewed as a sum of two Hamiltonians

H� (Q1 , Q2 , P1 , P2)=H� 1(Q1 , P1)+H� 2(Q2 , P2) (14)

with

H� 1(Q1 , P1)=
P2

1

2C1

, H� 2(Q2 , P2)=
P2

2

2C2

+V(&Q2&) (15)

Thus the system is split into the Cartesian product of two independent
pieces.

The (Q2 , P2) piece is the motion of a point particle of mass C2 moving
on the torus T� 2

2 and being influenced by a potential V centered at the
origin and of finite range. Using the methods of Section 2, we can make
this system non-ergodic.

Since the change of variables was canonical, it preserves the
Hamiltonian structure: for i=1, 2,

dQi

dt
=

�H� i

�Pi
,

dPi

dt
=&

�H� i

�Q i

For i=1, the equations become dQ1 �dt=P1 �C1 , dP1 �dt=0 so that
Q1(t)=Q1(0)+tP1 �C1 , P1(t)=P1(0). We interpret these solutions as
follows. The total momentum of the original system equals P1(a+b) and
is invariant. Q1 is a type of generalized center of mass; it undergoes straight
line motion on the torus T� 2

1 .
In conclusion, we see that under the canonical change of variables

given by (10, 11), the dynamics of the system split into a Cartesian product
of two Hamiltonian systems. The first system is linear motion on a torus.
The second is the motion of a point particle being acted upon by a sym-
metric potential V� of finite range.

4b. Reduction for All Masses

To present a reduction that works also for the case of irrational mass
ratios, we follow the method of Simanyi and Wojtkowski(17) who studied
the case of two particles with inelastic collision.
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We start by changing configuration space coordinates: (Q1 , Q2)=
L1(q1 , q2) with

Q1=q1 , Q2=q2&q1 (16a)

This linear map L1 : T 2_T 2 � T� 2
1_T� 2

2 is well defined with T� 2
i , i=1, 2,

having the same size as the original T 2 and is one-to-one. Using the
Lagrangian formulation, we determine the associated generalized momen-
tum coordinates

P1=m1q* 1+m2 q* 2= p1+ p2=total momentum, P2=m2q* 2= p2 (16b)

This change of variables is canonical and transforms the Hamiltonian (3)
into

H� 1(Q1 , Q2 , P1 , P2)=
P2

1

2m1

&
P1 P2

m1

+
P2

2

2m+
+V(&Q2 &) (17)

where m+=(m1m2 �m1+m2) is called the reduced mass.
Hamilton's equations give

dQ2

dt
=

�H� 1

�P2

=
&P1

m1

+
P2

m+
,

dP2

dt
=&

�H� 1

�Q2

=&
�V

�Q2

(&Q2&) (18)

The total momentum P1= p1+ p2 of the system is conserved. If we fix the
energy level H=E and the total momentum P1=I, then on the level sur-
face of constant energy and constant momentum, the equations of motion
for (Q2 , P2) become

dQ2

dt
=

&I
m1

+
P2

m+
,

dP2

dt
=&

�V
�Q2

(&Q2&) (19)

Thus on a level surface of fixed energy and momentum, the motion of
(Q2(t), P2(t)) is independent of the variables Q1 , P1 . In such a case, the
flow (Q2(t), P2(t)) is said to be a factor of the original flow [29, Sec-
tion 4.1g].

Taking the Hamiltonian H� 2 defined by

H� 2(Q2 , P2)=&
IP2

m1

+
P2

2

2m+
+V(&Q2&) (20)
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we have that the motion (Q2(t), P2(t)) is determined by the equations

dQ2

dt
=

�H� 2

�P2

,
dP2

dt
=&

�H� 2

�Q2

We complete the square to produce another canonical change of
variables:

Q3=Q2 , P3=\P2&
m+

m1

I+ (21)

that converts (19) into

dQ3

dt
=

1
+

P3=
�H� 3

�P2

,
dP3

dt
=&

�V
�Q3

(&Q3&)=&
�H� 3

�Q3

(22)

where H� 3 is given by

H� 3(Q3 , P3)=
P2

3

2m+
+V(&Q3 &) (23)

The energy level for this system is related to the energy E=H(qi , pi )=
H� 1(Qi , P i ) of the original system by

H� 3(Q3 , P3)=H� 2+
m+I 2

2m2
1

=E&
I 2

2(m1+m2)
(24)

Now we have a single particle Q3 moving on a torus T� 2
3 of the same

size as the original torus T 2 under the influence of a single radially sym-
metric potential V(&Q3&)=V(&Q2 &)=V(&q2&q1 &).

In summary, for a fixed energy and momentum level surface, the
original system H(qi , pi ) is equivalent to a system H� (Qi , P i ). This new
system has a factor which is equivalent to the flow of a single point particle
of mass m+ moving on the torus T� 2

3 under the influence of a finite range
potential.

5. NONERGODICITY OF 2 PARTICLES

We examine the motion of two particles of mass m1 and m2 interacting
under the influence of a Lennard-Jones potential V of finite range R on a
two-dimensional torus T 2=(&lx , lx)_(&ly , ly) and show that under
appropriate conditions, this system is non-ergodic.
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For the change of variables used in Section 4a, the system was a
many-to-one cover of a Cartesian product of two systems, one of which
was a point particle moving on a torus with a finite range Lennard-Jones
potential. If this latter system is non-ergodic, then the Cartesian product
and hence the original system are also non-ergodic.

For the change of variables procedure described in Section 4b, the
original system contained as a factor a one-particle system moving on a
torus with a finite range Lennard-Jones potential. If this factor is non-
ergodic, then it is a standard ergodic theory result that the original system
is also non-ergodic [29, Section 4.1g]. We outline in some detail the
precise relationship between the factor system and the original system.

Given a fixed potential V, we look at the factor system H� 3(Q3 , P3)
given by (23). The motion of Q3 occurs on a torus T� 2

3 of the same size
as T 2. On T� 2

3 there is a Lennard-Jones potential of finite range R centered
at the origin. For each energy level E, the potential generates a rotation
function 2%E . By the results of Section 2, there is a threshold energy E0 ,
such that for all energies E*�E0 , the rotation function 2%E* is partially
focusing. Take any such energy level E* that also satisfies the technical
condition (1): 2%E*(,*){2,* mod(?), where ,* is the critical angle for
which 2%$E*(,*)=2.

Theorem 5.1. For such an E*, we can then find a torus size
[lx0

, ly0
] such that for any value of total momentum I and energy E satis-

fying the relation

E=E*+
I 2

2(m1+m2)

the two-particle system generated by the Hamiltonian

H(q1 , q2 , p1 , p2)=
p2

1

2m1

+
p2

2

2m2

+V(&q1&q2 &), qi # T 2, i=1, 2

is non-ergodic on the (E, I ) energy-momentum level surface.
Furthermore, there exists an =>0 such that when |E&E*|, |lx0

&lx |,
|ly0

&ly | are all less than =, then the two-particle system restricted to an
[E, I ] level surface for which

E=E+
I 2

2(m1+m2)

is non-ergodic on every torus with size [lx , ly].
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Proof. By the results of Section 2, we can choose lengths [lx0
, ly0

] for
the torus T� 2

3 such that the one-particle system H� 3 has a stable elliptic orbit
and hence is non-ergodic. Elliptic islands are stable under small perturba-
tions so nearby energy levels and torus sizes will also be non-ergodic.

The following standard argument shows that for any values of energy
E and momentum I for which

E&
I 2

2(m1+m2)
=E*

non-ergodicity will then also hold for the original system H(qi , pi ) on the
(E, I ) energy-momentum level surface.

In a neighborhood of the initial conditions for the stable periodic orbit
for H� 3 , there is a set of positive measure of initial conditions (Q3(0), P3(0))
/T� 2

3_R2 for which the orbit (Q3(t), P3(t)) moves in a restricted region of
its phase space. Consider this positive measure set in (Q2 , P2) coordinates.
Now choose a fixed value P1=I (since dP1 �dt=0, this value will remain
constant under the flow) and consider the energy level surface E=E*+I 2�
(2(m1+m2)). Let the initial position Q1(0) vary over all of T 2. The orbits
(Q1(t), Q2(t), P1(t)#I, P2(t)) produced in this way will form a positive
measure set of trajectories which have a restricted motion for the system
H� 1 on the (E, I ) level surface. Thus H� 1 will be non-ergodic on this energy-
momentum level set and hence so will the original Hamiltonian system
H(qi pi ).

APPENDIX. SPECIAL CASE OF EQUAL MASSES AND
ZERO TOTAL MOMENTUM

In the case of equal masses and zero total momentum, we can reduce
the two-particle system to the motion of a single particle in a way that
allows us to see geometrically the relation between a periodic orbit for the
reduced system and for the original system.

We denote the common mass of the particles by m=m1=m2 and have
that total momentum P= p1+ p2 equals zero. We choose the position
coordinate q so that the center of mass of the system

qcm=
mq1+mq2

2m
(25)

is initially at the origin. Since

dqcm

dt
=

mq* 1+mq* 2

2m
=

p1+ p2

2
=

P
2

(26)
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the condition P=0 implies that qcm(t) stays fixed at the origin for all time.
Hence

q1(t)=&q2(t) (27)

The condition P= p1+ p2=0 further implies that p1=&p2 and hence
that

q* 1=&q* 2 (28)

Thus to determine the dynamics of the system (q1 , q2 , p1 , p2)(t), it is
enough to know the dynamics of (q1 , p1)(t) and then use equations
(27, 28) to recover the full motion. The equations of motion for (q1 , p1)(t)
are

dqi

dt
=

pi

mi

dpi

dt
=&

�V
�qi

(&q1&q2&)=&V$(&q1&q2&)
�(&q1&q2&)

�qi

=&V$(&q1&q2&)
(q1&q2)
&q1&q2&

=&V$(2 &q1&)
q1

&q1&
(29)

since q2=&q1 .
We will show that the trajectories (q1 , p1)(t) that come from solving

(29) can also be obtained as the solutions of a new Hamiltonian H� (q~ 1 , p~ 1)
on T 2 which includes several disjoint symmetric potentials of finite range.

To determine the Hamiltonian H� , we look at the original system. The
first particle moves linearly whenever the separation &q1&q2 &>R. When
the separation &q1&q2 &<R, the two particles will interact under the
potential V. Since the motion is taking place on a torus, the first particle
will interact with the second particle whenever

&q1&(nlx , mly)&�R�2, n, m # [&1, 0, 1] (30)

where the torus T 2=(&lx , lx)_(&ly , ly). For then, since q2=&q1 , we
have that &q1&q2&�R (Fig. 5).

Now imagine that the second particle is made invisible. Then we will
see one particle, whose position we denote by q~ 1 , moving on T 2. Most of
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Fig. 5. Two particles on torus interacting by finite range potential.

the time, the particle moves in a straight line but, when it comes close
to one of the lattice points of the torus, i.e., &q~ 1&(nlx , mly)&�R�2,
n, m # [&1, 0, 1], it is deflected by some type of force. We will show that
the force in a neighborhood of the lattice point (nlx , mly) is generated by
a symmetric potential V� (n, m) of finite range R�2 given by

V� (n, m)(q~ 1)= 1
2V(2 &q~ 1&(nlx , mly)&) (31)

Assuming this result for the moment, we see that the solutions
(q~ 1 , p~ 1)(t) of position and momentum of the point particle of mass m are
generated by the Hamiltonian

H� (q~ 1 , p~ 1)=
p~ 1

2m
+V� (q~ 1) (32)

where V� is a compound potential given by

V� (q~ 1)= m, n # [0, 1]V� (n, m)(q~ 1) (33)

Since our compound potential is defined on a torus, we have a choice
as to where to base the potentials. We choose to take representatives of the
potentials V� (n, m) that are based at the lattice points [(0, 0), (1, 0), (0, 1),
(1, 1)] relative to the coordinate vectors [lx , ly].

Note that the total energy of this one-particle system is exactly half the
energy of the two-particle system (3).

1044 Donnay



To show that the force the single particle feels near a lattice point is
indeed given by (31), we prove that the trajectories (q~ 1 , p~ 1)(t) generated by
(32) agree with the trajectories (q1 , p1)(t) given by (29). We have that

dq~ 1

dt
=

�H�
�p~ 1

=
p~ 1

m
(34)

dp~ 1

dt
=&

�H�
�q~ 1

=&
�V�
�q~ 1

(q~ 1)

Since the potential V� has the same values about each lattice point, it
is enough to consider the case that q~ 1 is close to the origin and interacts
with the potential V� (0, 0) . Then

dp~ 1

dt
=&

�V� (0, 0)

�q~ 1

(q~ 1)=&
1
2

�V
�q~ 1

(2 &q~ 1&)

=&
1
2

V$(2 &q~ 1&)
�(2 &q~ 1&)

�q~ 1

=&V$(2 &q~ 1&)
q~ 1

&q~ 1&
(35)

Thus (q~ 1 , p~ 1)(t) and (q1 , p1)(t) satisfy the same equations of motion.
In conclusion, we have reduced the motion of the two-particle system

(3) on T 2 in which the particles interact by means of a potential V to a
one-particle system (32) on T 2 in which the particle interacts with a com-
pound potential V� consisting of four disjoint copies of a symmetric poten-
tial of finite range. A nice fundamental domain for T 2 is the region
(&lx �2, 3lx �2)_(&ly �2, 3ly �2). With this choice of domain, each of the
potentials V� (n, m) based at the four lattice points [(0, 0), (1, 0), (0, 1),
(1, 1)] can be visualized without requiring identifications of the torus
(Fig. 6). If the original potential V is of type Lennard-Jones, then the
potentials V� (n, m) are also of type Lennard-Jones.

We can make a further reduction in the system to produce a particle
interacting with a single symmetric potential of finite range. Consider par-
ticle motion on the smaller torus

T� 2=(&lx�2, lx �2)_(&ly �2, ly �2) (36)

which contains one potential V� (0, 0) centered at the origin. Then the larger
torus T 2 provides a four-fold cover of the smaller torus. The particle
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Fig. 6. Reduced system of one particle on torus with four disks.

motion on T� 2 lifts to the particle motion on T 2. This system seems to be
closely related to the system H� 2(Q2 , P2) of Section 4a.

Thus we have reduced our original two-particle system to a
generalized Sinai billiard with one disk. We make the reduced system non-
ergodic by constructing a stable elliptic periodic orbit. This orbit lifts using
the relations q1(t)=&q2(t), q* 1(t)=&q* 2(t) to a stable periodic orbit for
the two-particle system (Fig. 7). In this figure, we show the time evolution
[qt

i], i=1, 2 of the two particles at times t=0, 1, 2.

Fig. 7. Periodic orbit for two particles of equal mass and momentum zero on torus.
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